当前位置:得满分网教育文章数学学科知识数学教研数学教学设计高二数学《等差数列》教学设计

高二数学《等差数列》教学设计

11-01 11:56:30 | 浏览次数: 27018 次 | 栏目:数学教学设计
标签:数学教学设计,http://www.manfen6.com 高二数学《等差数列》教学设计,

 

  【小编寄语】www.manfen6.com数学网小编给大家整理了高二数学《等差数列》教学设计 ,希望能给大家带来帮助!

  (一)教学目标

  1.知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;体会等差数列与一次函数的关系。

  2. 过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题,进行等差数列通项公式应用的实践操作并在操作过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究。

  3.情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。

  (二)教学重、难点

  重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。

  难点:概括通项公式推导过程中体现出的数学思想方法。

  (三)学法与教学用具

  学法:引导学生首先从四个现实问题(数数问题、女子举重奖项设置问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列的特点,推导出等差数列的通项公式;可以用多种方法对等差数列的通项公式进行推导。

  教学用具:投影仪

  (四)教学设想

  [创设情景]

  上节课我们学习了数列。在日常生活中,人口增长、教育贷款、存款利息等等这些大家以后会接触得比较多的实际计算问题,都需要用到有关数列的知识来解决。今天我们就先学习一类特殊的数列。

  [探索研究]

  由学生观察分析并得出答案:

  (放投影片)在现实生活中,我们经常这样数数,从0开始,每隔5数一次,可以得到数列:0,5,____,____,____,____,……

  2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目。该项目共设置了7个级别。其中较轻的4个级别体重组成数列(单位:kg):48,53,58,63。

  水库的管理人员为了保证优质鱼类有良好的生活环境,用定期放水清理水库的杂鱼。如果一个水库的水位为18cm,自然放水每天水位降低2.5m,最低降至5m。那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位组成数列(单位:m):18,15.5,13,10.5,8,5.5

  我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本金计算下一期的利息。按照单利计算本利和的公式是:本利和=本金×(1+利率×寸期).例如,按活期存入10 000元钱,年利率是0.72%。那么按照单利,5年内各年末的本利和分别是:

  时间年初本金(元)年末本利和(元)

  第1年10 00010 072

  第2年10 00010 144

  第3年10 00010 216

  第4年10 00010 288

  第5年10 00010 360

  各年末的本利和(单位:元)组成了数列:10 072,10 144,10 216, 10 288,10 360。

  思考:同学们观察一下上面的这四个数列:0,5,10,15,20,…… ①

  48,53,58,63 ②

  18,15.5,13,10.5,8,5.5 ③

  10 072,10 144,10 216, 10 288,10 360 ④

  看这些数列有什么共同特点呢?

  (由学生讨论、分析)

  引导学生观察相邻两项间的关系,得到:

  对于数列①,从第2项起,每一项与前一项的差都等于 5 ;

  对于数列②,从第2项起,每一项与前一项的差都等于 5 ;

  对于数列③,从第2项起,每一项与前一项的差都等于 -2.5 ;

  对于数列④,从第2项起,每一项与前一项的差都等于 72 ;

  由学生归纳和概括出,以上四个数列从第2项起,每一项与前一项的差都等于同一个常数(即:每个都具有相邻两项差为同一个常数的特点)。

  [等差数列的概念]

  对于以上几组数列我们称它们为等差数列。请同学们根据我们刚才分析等差数列的特征,尝试着给等差数列下个定义:

  等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

  这个常数叫做等差数列的公差,公差通常用字母d表示。那么对于以上四组等差数列,它们的公差依次是5,5,-2.5,72。

  提问:如果在

  

 

  与

  

 

  中间插入一个数A,使

  

 

  ,A,

  

 

  成等差数列数列,那么A应满足什么条件?

  由学生回答:因为a,A,b组成了一个等差数列,那么由定义可以知道:

  A-a=b-A

  所以就有

  

 

  由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时,A叫做a与b的等差中项。

  不难发现,在一个等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等差中项。

  如数列:1,3,5,7,9,11,13…中5是3和7的等差中项,1和9的等差中项。9是7和11的等差中项,5和13的等差中项。

  看来,

  

 

  从而可得在一等差数列中,若m+n=p+q则

  

 

  [等差数列的通项公式]

  对于以上的等差数列,我们能不能用通项公式将它们表示出来呢?这是我们接下来要学习的内容。

  ⑴、我们是通过研究数列

  

 

  的第n项与序号n之间的关系去写出数列的通项公式的。下面由同学们根据通项公式的定义,写出这四组等差数列的通项公式。

  由学生经过分析写出通项公式:

  ① 这个数列的第一项是5,第2项是10(=5+5),第3项是15(=5+5+5),第4项是20(=5+5+5+5),……由此可以猜想得到这个数列的通项公式是

  

 

  ② 这个数列的第一项是48,第2项是53(=48+5),第3项是58(=48+5×2),第4项是63(=48+5×3),由此可以猜想得到这个数列的通项公式是

  

[1] [2] [3] [4]  下一页

TAG: 教学  高二数学