③ 这个数列的第一项是18,第2项是15.5(=18-2.5),第3项是13(=18-2.5×2),第4项是10.5(=18-2.5×3),第5项是8(=18-2.5×4),第6项是5.5(=18-2.5×5)由此可以猜想得到这个数列的通项公式是
④ 这个数列的第一项是10072,第2项是10144(=10172+72),第3项是10216(=10072+72×2),第4项是10288(=10072+72×3),第5项是10360(=10072+72×4),由此可以猜想得到这个数列的通项公式是
⑵、那么,如果任意给了一个等差数列的首项
和公差d,它的通项公式是什么呢?
引导学生根据等差数列的定义进行归纳:
(n-1)个等式
所以
……
思考:那么通项公式到底如何表达呢?
……
得出通项公式:由此我们可以猜想得出:以
为首项,d为公差的等差数列
的通项公式为:
也就是说,只要我们知道了等差数列的首项
和公差d,那么这个等差数列的通项
就可以表示出来了。
选讲:除此之外,还可以用迭加法和迭代法推导等差数列的通项公式:
(迭加法):
是等差数列,所以
……
两边分别相加得
所以
(迭代法):
是等差数列,则有