.
C. 若
、
是第三象限的角,则cos
>cos
.
D. 若
、
是第四象限的角,则tan
>tan
.
2.求下列函数的定义域:
(1) y =
; (2) y = lg(3-4sin2x) .
延展作业:
1. 类比正切线的作法,你能作出余切线吗?
2.结合三角函数线我们已经发现了一些很有价值的结论,你还能得出哪些结论?请大家继续在论坛上交流.
3.查阅数学家欧拉的生平事迹,了解他在数学方面的突出贡献,谈谈你的学习感受,并发表于论坛交流.
既能保证全体学生的巩固应用,又兼顾学有余力的学生,同时将探究的空间由课堂延伸到课外.
教学设计说明:
1.让计算机软件和网络真正走入数学课堂,发挥它们的辅助作用.
“让计算机软件和网络走入数学课堂”是提出了多年的口号,但是如何真正让多媒体在数学学习中发挥积极的作用却是我们一直在探索的问题.本节课有较广的延展面,是培养学生发现、探索、创新能力的很好素材,但是要在一节课45分钟时间内实现构想,对课的安排提出了非常高的要求.几何画板软件的动画演示功能正好可以帮助学生做数学试验,探讨数学问题;网络论坛可以让他们充分交流,相互学习.为此,我把授课地点放在多媒体网络教室,充分发挥多媒体的优势,既丰富了三角函数线的概念,又培养了学生发现问题、解决问题的能力,探索精神、创新意识也有了相应的提高.
2.不仅要让学生掌握数学的基础知识,更要让他们领悟科学的研究方法.
课堂教学最终是为了让学生摆脱课堂,独立学习,所以不仅要让学生掌握数学的基础知识,更要让他们领悟科学的研究方法.本节课所采用的科研式教学法体现了研究新问题的一般思路,让学生逐步领悟这种科学的研究方法,有利于他们今后能够独立地开展科研活动.
3.使学生始终保持学习兴趣,快乐学数学.
苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者.”本节课正是抓住学生的这一心理需求,充分利用互动工具,让学生动手实践、思考探索,合作交流,真正意义上做到尊重学生的创造性,挖掘学生的潜力,让他们对整个学习过程充满激情,快乐学数学!