(2)r2= D2+E2-4F=4(t+3)2+4(1-4t2)2-4(16t4+9)=-28t2+24t+4=-28(t-
)2+
,
21. 解:(1)曲线C的方程可化为:(x2+y2-20)+m(-4x+2y+20)=0,由
,
∴不论m取何值时,x=4, y=-2总适合曲线C的方程,即曲线C恒过定点(4, -2).
(2)D=-4m, E=2m, F=20m-20, D2+E2-4F=16m2+4m2-80m+80=20(m-2)2
∵m≠2, ∴(m-2)2>0, ∴D2+E2-4F>0, ∴曲线C是一个圆, 设圆心坐标为(x, y), 则由
消去m得x+2y=0, 即圆心在直线x+2y=0上.
(3)若曲线C与y轴相切,则m≠2,曲线C为圆,其半径r=
,
又圆心为(2m, -m),则
=|2m|,
.