小编寄语:www.manfen6.com数学网小编给大家整理了八年级暑假学与练试题与答案解析,希望能给大家带来帮助。祝大家暑期愉快!
【快乐假期】八年级暑假学与练试题与答案解析
一次函数与不等式
学生姓名 家长签字
一、学习指引
1.知识要点
(1)图形与平面直角坐标系(2)一次函数与不等式(3)一次函数与不等式的应用
2.方法指引
(1)熟知一次函数的图象与性质,实际问题一定要注意自变量取值.
(2)一次函数的图象在X轴上方的部分X的取值相当于一次不等式大于0的解;一
次函数的图象在X轴下方的部分X的取值相当于一次不等式小于0的解.
(3)函数题一定要注意一种重要的数学思想即数形结合.
(4)会用图象上的点、实际问题中的变量关系以及图象的形状和位置或具有的性质
等各种条件,灵活运用转化、分类讨论和方程等思想方法,用待定系数法来确定函数的解析式.
一、典型例题
(一)填空与选择
1.如图,在直角坐标系中,已知点 , ,对△ 连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑩的直角顶点的坐标为 .
2.如图,将边长为1的正方形OAPB沿x轴正方向连续翻转2 007次,点P依次落在点P1, P2, P3, P4, …,P2 007的位置,则P2 007 的横坐标x2 007=_ .
3.若直线y=mx+4,x=l,x=4和x轴围成的直角梯形的面积是7,则m的值是( )
A.-12 B.- 23 C.-32 D.-2
4.已知直线y1=ax+b和y2=mx+n的图象如图所示,根据图象填空.
⑴ 当x_ _时,y1>y2;当x___ _时,y1=y2;
当x___ ___时,y1
⑵ 方程组 是 .
5.如图,直线 经过 , 两点,则不
等式 的解集为 .
6.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线 (k>0)和
x轴上,已知点B1(1,1),B2(3,2),
则Bn的坐标是______________.
(二)例题讲解
例1:某公司装修需用A型板材240块、B型板材180块,A型板材规格是60 cm×30 cm,B型板材规格是40 cm×30 cm.现只能购得规格是150 cm×30 cm的标准板材.一张标准板材尽可能多地裁出A型、B型板材,共有下列三种裁法:(图是裁法一的裁剪示意图)
裁法一 裁法二 裁法三
A型板材块数 1 2 0
B型板材块数 2 m n
设所购的标准板材全部裁完,其中按裁法一裁x张、按裁法二裁y
张、按裁法三裁z张,且所裁出的A、B两种型号的板材刚好够用.
(1)上表中,m = ,n = ;
(2)分别求出y与x和z与x的函数关系式;
(3)若用Q表示所购标准板材的张数,求Q与x的函数关系式,
并指出当x取何值时Q最小,此时按三种裁法各裁标准板材
多少张?
例2.“5•12”汶川大地震后,某健身器材销售公司通过当地“红十字会”向灾区献爱心,捐出了五月份全部销售利润.已知该公司五月份只售出甲、乙、丙三种型号器材若干台,每种型号器材不少于8台,五月份支出包括这批器材进货款64万元和其他各项支出(含人员工资和杂项开支)3.8万元.这三种器材的进价和售价如下表,人员工资y1(万元)和杂项支出y2(万元)分别与总销售量x(台)成一次函数关系(如图).
(1)求y1与x的函数解析式; (2)求五月份该公司的总销售量;
(3)设公司五月份售出甲种型号器材t台,五月份总销售利润为W(万元),求W与t的函数关系式;(销售利润=销售额-进价-其他各项支出)
(4)请推测该公司这次向灾区捐款金额的最大值.
单位
万元/台 甲 乙 丙
进价 0.9 1.2 1.1
售价 1.2 1.6 1.3
(例2图)
例3.如图①,一条笔直的公路上有A、B、C 三地,B、C 两地相距 150 千米,甲、乙两辆汽车分别从B、C 两地同时出发,沿公路匀速相向而行,分别驶往C、B 两地.甲、乙两车到A 地的距离 、 (千米)与行驶时间 x(时)的关系如图②所示.
根据图象进行以下探究:
⑴请在图①中标出 A地的位置,并作简要的文字说明;
⑵求图②中M点的坐标,并解释该点的实际意义;
⑶在图②中补全甲车的函数图象,求甲车到 A地的距离 与行驶时间x的函数关系式;
⑷A地设有指挥中心,指挥中心及两车都配有对讲机,两部对讲机在15千米之内(含15千米)时能够互相通话,求两车可以同时与指挥中心用对讲机通话的时间.
例4.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为 ,两车之间的距离为 ,图中的折线表示 与 之间的函数关系.
根据图象进行以下探究:
信息读取
(1)甲、乙两地之间的距离为 km;
(2)请解释图中点 的实际意义;
图象理解
(3)求慢车和快车的速度;
(4)求线段 所表示的 与 之间的函数关系式,并写出自变量 的取值范围;
问题解决
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
例5.如图,直线y=- x+1分别与X轴,Y轴交于B,A.
(1)求B,A的坐标;
(2)把△AOB以直线AB为轴翻折,点O落在点C,以BC为一边做等边三角形△BCD,求D点的坐标.
例6.如图,直线y=kx+8分别与x轴、y轴相交于A、B两点,O为坐标原点,点A的坐标为(4,0).
(1)求k的值;
(2)若P为y轴(点B除外)上的一点,过P作PC⊥轴,交直
线AB于C.设线段PC的长为n,点P的坐标为(0,m).
①如果点P在线段BO(点B除外)上移动,求n与m的函
数关系式,并求自变量m的取值范围;
②如果点P在射线BO(B、O两点除外)上移动,连结PA,则ΔAPC的面积S也随之发生变化。请你在面积S的整个变化过程中,求当m为何值时,S=4?
一次函数与不等式同步训练
班级 姓名
【基础巩固】
一、填空与选择
1.已知一次函数 ,函数 随着 的增大而减小,且其图象不经过第一象限,则 的取值范围是 ( )
A. B. C. D.
2.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 ( )
A.12分钟 B.15分钟 C.25分钟 D.27分钟
3.如图,点A、B、C、D在一次函数 的图象上,它们的横坐标依次为-1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积这和是 ( )
A. B. C. D.
4.函数y1=x+1与y2=ax+b的图象如图所示,这两个函数图象如图所示,那么使y1,y2的值都大于零的x的取值范围是 .
5.如图1直线 上放置了一个边长为6的等边三角形,以A为坐标原点,记为A0,直线L为X轴建立直角坐标系当等边.如果等边三角形翻转204次,则顶点A204的坐标为_____ .
二、解答题
6.如图直线y= x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点P处,求直线AM的解析式.
7.某天,小明来到体育馆看球赛,进场时,发现门票还在家里,此时离比赛开始还有25分钟,于是立即步行回家取票.同时,他父亲从家里出发骑自行车以他3倍的速度给他送票,两人在途中相遇,相遇后小明立即坐父亲的自行车赶回体
育馆.下图中线段 、 分别表示父、子俩送票、取票过程中,
离体育馆的路程 (米)与所用时间 (分钟)之间的函数关系,
结合图象解答下列问题(假设骑自行车和步行的速度始终保持不变):
(1)求点 的坐标和 所在直线的函数关系式;
(2)小明能否在比赛开始前到达体育馆?
8.一辆客车从甲地开往甲地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x的函数关系图象如图12所示:
(1)根据图象,直接写出y1,y2关于x的函数关系式;
(2)分别求出当x=3,x=5,x=8时,两车之间的距离;
(3)若设两车间的距离为S(km),请写出S关于x的函数关系式;
(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油。求A加油站到甲地的距离.
【能力拓展】
一、选择题
9.线段 (1≤ ≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )
A.6 B.8 C.9 D.10
10.如图,某电信公司提供了 两种方案的移动通讯费用 (元)与通话时间 (元)之间的关系,则以下说法错误的是( )