x+
y=17 (教师板书)
师:对照圆的方程x2+y2=17和经过点P(
,
)的切线方程
x+
y=17,你能作出怎样的猜想?
生:。。。。。。
师:由x2+y2=17怎样写出切线方程
x+
y=17,与已知点P(
,
)有何关系?
(若看不出来,再看一例)
[例1/] 圆的方程是x2+y2=13,求过此圆上一点(2,3)的切线方程。
答案:2x+3y=13 即:2x+3y-13=0
师:发现规律了吗?(学生纷纷举手回答)
生:分别用切点的横坐标和纵坐标代替圆方程中的一个x和一个y,便得到了切线方程。
师:若将已知条件中圆半径改为r,点改为圆上任一点(xo,yo),则结论将会发生怎样的变化?大胆地猜一猜!
生:xox+yoy=r2.
师:这个猜想对不对?若对,可否给出证明?
生:。。。。。。
[例2]已知圆的方程是 x2+y2=r2,求经过圆上一点P(xo,yo)的切线的方程。
解:如图(上一页),因为切线与过切点的半径垂直,故半径OP的斜率与切线的斜率互为负倒数
∵半径OP的斜率 K1=
,∴切线的斜率 K=-
=-
∴所求切线方程:y-yo= -
(x-xo)
即:xox+yoy=xo2+yo2 亦即:xox+yoy=r2. (教师板书)
当点P在坐标轴上时,可以验证上面方程同样适用。
归纳总结:圆的方程可看成 x.x+y.y=r2,将其中一个x、y用切点的坐标xo、yo 替换,可得到切线方程
[例3]右图为某圆拱桥的一孔圆拱的示意图.该圆拱跨度AB=20M,拱高OP=4M,在建造时每隔4M需用一个支柱支撑,求支柱A2P2的长度。(精确到0.01M)
引导学生分析,共同完成解答。
师生分析:①建系; ②设圆的标准方程(待定系数);③求系数(求出圆的标准方程);④利用方程求A2P2的长度。
解:以AB所在直线为X轴,O为坐标原点,建立如图所示的坐标系。则圆心在Y轴上,设为
(0,b),半径为r,那么圆的方程是 x2+(y-b)2=r2.
∵P(0,4),B(10,0)都在圆上,于是得到方程组:
解得:b=-10.5 ,r2=14.52
∴圆的方程为 x2+(y+10.5)2=14.52.
将P2的横坐标x=-2代入圆的标准方程
且取y>0
得:y=
≈14.36-10.5=3.86 (M)
答:支柱A2P2的长度约为3.86M。
Ⅳ.课堂练习、课时小结
课本P77练习2,3
师:通过本节学习,要求大家掌握圆的标准方程,理解并掌握切线方程的探求过程和方法,能运用圆的方程解决实际问题.
Ⅴ.问题延伸、课后作业
(一)若P(xo,yo)在圆(x-a)2+(y-b)2= r2上时,試求过P点的圆的切线方程。
课本P81习题7.7 : 1,2,3,4
(二)预习课本P77~P79
教学设计说明
设计思想:
在教学过程中,教师遵循数学发展规律,并依据建构主义教育理论,创设一系列数学实验环境,在情境中让学生观察、类比、猜想、尝试、探索、归纳并引导加以证明,强调主动建构,从深层次加强学生对知识的感知度,使学生能更好地理解和掌握圆的标准方程。