【小编寄语】www.manfen6.com数学网小编给大家整理了人教版高中数学《归纳推理》说课稿 ,希望能给大家带来帮助!
归纳推理
人教A版普通高中课程标准实验教科书选修1-2
茂名市实验中学高二数学
说课老师:周文燕
各位评委:
大家好,我是实验中学周文燕,现担任高二数学,今天我说课的题目是《归纳推理》。我准备就下面几方面来进行分析。
一、教材分析
教材的地位和作用
推理与证明是人教版普通高中课程标准实验教科书选修1-2第二章第一节内容,思想贯穿于高中数学的整个知识体系,是新课标教材的亮点之一。本节内容将归纳推理的一般方法进行了必要的总结和归纳,同时也对后继知识的学习起到引领的作用.
2、教材处理
《归纳推理》是培养学生观察、分析、发现、概括、猜想和探索能力的极好素材。根据本节课标要求:从演示观察,先形象地真实举例,然后转化为猜想,引导探究典型例子分析,加强对概念的理解 。
二、教学目标分析:
1.知识技能目标:理解归纳推理的概念,了解归纳推理的作用,掌握归纳推理的一般步骤,会利用归纳进行一些简单的归纳推理。
2、过程方法目标:学生自主学习归纳推理的一般方法,建构归纳推理的思维方式.让学生明白数学发现的过程和方法,培养学生分析解决问题的能力,锻炼他们探索规律,融会贯通的能力,并使学生思维能力得到提升。
3.情感态度,价值观目标:通过学生主动探究、合作学习、相互交流,培养不怕困难、勇于探索的优良作风,增强学生的数学应用意识,提高学生数学思维的情趣,给学生成功的体验,形成学习数学知识、了解数学文化的积极态度.
三、教学的重点、难点分析:
1、教学重点:了解归纳推理含义、能利用归纳进行简单推理。
教学策略:演示观察,先形象地真实举例,然后转化为猜想,引导探究典型例子分析,加强对概念的理解
2.教学难点:用归纳进行推理,做出猜想。
教学策略:第一,创设情景;第二,观察规律,得出猜想;第三,实际应用,提出质疑。
四、教法分析、教学手段与教具选择:
1.教学方法:自主探究、协作学习、启发发现、课堂讨论法
2.教具:多媒体、粉笔、黑板。
3.教学手段:多媒体教学课件。
五、学法分析:
本课教给学生的学法是“发现问题、分析问题、解决问题”。因此本课教学过程中,让学生带着学习任务通过自主学习发现、课堂讨论、相互合作等方式,使学生在完成任务的过程中不知不觉实现知识的传递、迁移和融合。
六、教学过程设计分析:
1、创设情景、引入新课
游戏:袋子里装有大小质地一样的玻璃球,摸一个出来是红色,摸第二个出来也是红色,第三、第四还是红色…
问题1:有什么猜想?
师生活动:老师把玻璃球搅拌均匀,可叫一个学生摸球,其他学生细心观察。
设计意图:游戏吸引学生注意力,提高学习兴趣,形象地引出归纳推理。
问题2: 观察 10=3+7,12=5+7,32=13+19 …等式特征,有怎样的规律?
师生活动:这里要引导学生观察:这是一个等式,左右两边数字有什么特征,学生的猜想多种多样,不要抹杀学生的洞察力,可进一步引导学生尝试:其它的偶数有同样的规律吗?
设计意图:通过欣赏一些伟大猜想产生的过程,探索出歌德巴赫猜想:一个偶数(不小于6)总可以表示成两个奇质数之和。带领学生走进归纳推理的领域。学生主动探究、自我发现,培养勇于探索的优良作风。
问题3:歌德巴赫猜想的历史了解吗?
师生活动:通过多媒体让学生阅读材料。
设计意图:提高学生数学思维的情趣,了解数学文化,对数学充满信心的积极态度,培养爱国精神。
问题4:歌德巴赫猜想的推理过程如何?
师生活动:让学生探究歌德巴赫是怎样提出这个猜想的。
设计意图:通过自己发现歌德巴赫猜想的推理过程---归纳推理的产生,为理解归纳推理的含义做铺垫。
问题5:由上述推理过程能否用自己语言描述归纳推理的含义?
师生活动:学生自己总结,教师个别提问,学生修改,该问题只有部分同学能及时地回答出来。有些同学犹疑不答,有些同学会说出不同的语句获不全面、不十分准确。教师通过评价学生的结论引入归纳推理含义——是由部分到整体、由个别到一般的推理。
设计意图:使学生更深刻理解和记忆归纳推理的含义,培养学生归纳、总结、理解能力,这比老师直接给出概念效果要好得多。
问题6:你能用归纳推理提出一个猜想吗?
师生活动:学生各抒己见,踊跃回答,有生活的,有数学的,其它学科的等。例如:
金、银、铜、铁、铝等金属能导电,归纳出“一切金属都能导电”
硫酸、硝酸、碳酸等含有氧元素,归纳出“所有的酸都含有氧元素” ③篮球、排球、乒乓球等是圆的,归纳出“所有的球都是圆的”
……
可以让同学们相互补充,老师适当点评和肯定。
设计意图:更深一步具体理解归纳推理的含义,初步形成能用归纳推理得出结论的步骤。感受归纳推理无处不在,自然而有趣,创造和谐积极的学习气氛。这比直接解释概念记忆要深刻和通俗易懂。
2、典型例题、知识应用
例:观察右图,可以发现
1 3=4=22,
1 3 5=9=32,
1 3 5 7=16=42,
1 3 5 7 9=25=52,
问题7: 上面等式如何由图中观察出来?1 3 … 1999=?由上述具体事实能得出怎样的一般性规律?能用一条等式表示出来吗?
师生活动:问题逐个解决,个别回答,集体回答相结合。部分学生会观察上式,但不会从图中总结规律,这里要从小正方形的个数或面积去引导他们观察,引导学生得出等式的规律要看等号左右两边存在什么规律。总结:由几条特殊的等式存在的规律,归纳出一般性的结论1 3 … (2n-1)=n2(n∈N*)成立,这就是归纳推理。
设计意图:给出例子让学生通过直观感知、观察分析、归纳体会归纳推理的一般步骤,进一步感受归纳推理的作用。让他们懂得数形结合去做题。
问题8:
师生活动:
题目没有直接给出部分事物特征,应先找出来再观察、归纳、猜想.引导学生做题方向,个别提问,师生共同完成、总结。
设计意图:体会归纳推理的一般步骤,进一步感受归纳推理的作用。让学生感受归纳推理起到了能够提供研究方向的作用,培养学生进行归纳推理的能力。
问题9、归纳推理的一般步骤如何?
师生活动:通过两个例题,学生自行总结,教师综合结论得出
一般步骤:⑴ 对有限的资料进行观察、分析、归纳整理;⑵ 提出带有规律性的结论,即猜想;
设计意图:总结步骤,为后面应用打基础,让学生自行总结充分体现学生的自主性。
3、思考练习
1)、观察下面的“三角阵”
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 a 5 1
……
1 10 45 … … 45 10 1
试找出相邻两行数之间的关系,并求a
师生活动:学生观察,寻找规律,老师和学生共同评价学生的观察结果并接着问:上面“三角阵”还有其它规律吗?让学生分组讨论回答
设计意图:感受数学美和发现规律的喜悦,激发学生更积极地去寻找规律、认识规律。同时让学生感受到只要做个有心人,发现规律并非难事。
2)、在数列{an}中,若a1 =1 ,
an 1= (n∈N﹡),试猜想这个数列的通项公式.
师生活动:请三位学生上黑板板书,并另请三位批改,让学生自己掌握做题方法和步骤
答案:通过运算a2、a3、a4 等的值得出an=
3)、画一画、猜一猜:根据下列图案中圆圈的排列规则,猜想第(5)个图形是怎样排列的,由多少个圆圈组成;第n个图形中共有多少个圆圈?
n=1 n=2 n=3 n=4
师生活动:由学生在讲义上作图,发现规律并总结,再通过学生之间充分讨论之后相互交流,教师点评。
设计意图:学生主动探究规律,感受归纳推理对发现新事实、得出新结论的作用。引导学生发现并总结规律。给学生创建一个开放的、有活力、有个性的数学学习环境,感受数学美和发现规律的喜悦,激发学生更积极地去寻找规律、认识规律。同时让学生感受到只要做个有心人,发现规律并非难事。
答案:第5个图形中共有圆圈21个;第n个图形中共有圆圈:n(n-1) 1个
4、质疑、解疑
问题9:猜想的一般结论是否成立?即归纳推理的可靠性如何?为什么要学习归纳推理?
师生活动:教师生动讲述欧拉发现第五个费马数的过程,激发学生的好奇心与求知欲 ,同时,通过“猜想——验证——再猜想”说明科学的进步与发展处在一个螺旋上升的过程。