当前位置:得满分网教育文章奥数题库小学四年级奥数奥数容斥原理解法

奥数容斥原理解法

10-19 13:02:53 | 浏览次数: 58618 次 | 栏目:小学四年级奥数
标签:小学奥数题,奥数题及答案,http://www.manfen6.com 奥数容斥原理解法,
 

  容斥原理

 

  在计数时,必须注意无一重复,无一遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

 

  

 

  如果被计数的事物有A、B两类,那么,A类或B类元素个数= A类元素个数+

 

  B类元素个数—既是A类又是B类的元素个数。

 

  例1

 

  一次期末考试,某班有15人数学得满分,有12人语文得满分,并且有4人语、数都是满分,那么这个班至少有一门得满分的同学有多少人?

 

  分析:依题意,被计数的事物有语、数得满分两类,“数学得满分”称为“A类元素”,“语文得满分”称为“B类元素”,“语、数都是满分”称为“既是A类又是B类的元素”,“至少有一门得满分的同学”称为“A类或B类元素个数”的总和。

 

  试一试:某班学生每人家里至少有空调和电脑两种电器中的一种,已知家中有空调的有41人,有电容斥原理(2)

 

  如果被计数的事物有A、B、C三类,那么,A类或B类或C类元素个数= A类元素个数+

 

  B类元素个数+C类元素个数—既是A类又是B类的元素个数—既是A类又是C类的元素个数—既是B类又是C类的元素个数+既是A类又是B类而且是C类的元素个数。

 

  例2某校六(1)班有学生54人,每人在暑假里都参加体育训练队,其中参加足球队的有25人,参加排球队的有22人,参加游泳队的有34人,足球、排球都参加的有12人,足球、游泳都参加的有18人,排球、游泳都参加的有14人,问:三项都参加的有多少人?

 

  分析:仿照例1的分析,你能先说一说吗?

 

  例3 在1到1000的自然数中,能被3或5整除的数共有多少个?不能被3或5整除的数共有多少个?

 

  分析:显然,这是一个重复计数问题(当然,如果不怕麻烦你可以分别去数3的倍数,5的倍数)。我们可以把“能被3或5整除的数”分别看成A类元素和B类元素,能“同时被3或5整除的数(15的倍数)”就是被重复计算的数,即“既是A类又是B类的元素”。求的是“A类或B类元素个数”。现在我们还不能直接计算,必须先求出所需条件。1000÷3=333……1,能被3整除的数有333个(想一想,这是为什么?)同理,可以求出其他的条件。

 

  例4 分母是1001的最简分数一共有多少个?

 

  分析:这一题实际上就是找分子中不能整除1001的数。由于1001=7×11×13,所以就是找不能被7,11,13整除的数。

 

  例5

 

  某个班的全体学生在进行了短跑、游泳、投掷三个项目的测试后,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一项达到了优秀,达到了优秀的这部分学生情况如下表:

 

  短跑 游泳 投掷 短跑、游泳 短跑、投掷 游泳、投掷 短跑、游泳、投掷

 

  1 7 1 8 1 5 6 6 5 2

 

  求这个班的学生共有多少人?

 

  分析:这个班的学生数,应包括达到优秀和没有达到优秀的。

 

  试一试:一个班有42人,参加合唱队的有30人,参加美术组的有25人,有5人什么都没有参加,求两种都参加的有多少人?

 

  例6

 

  在一根长的木棍上有三种刻度线,第一种刻度线将木棍分成10等份,第二种将木棍分成12等份,第三种将木棍分成15等份。如果沿每条刻度线将木棍锯断,木棍总共被锯成多少段?

 

  分析:很显然,要计算木棍被锯成多少段,只需要计算出木棍上共有多少条不同的刻度线,在此基础上加1就是段数了。

 

  若按将木棍分成10等份的刻度线锯开,木棍有9条刻度线。在此木棍上加上将木棍分成12等份的11条刻度线,显然刻度线有重复的,如5/10和6/12都是1/2。同样再加上将木棍分成15等份的刻度线,也是如此。所以,我们应该按容斥原理的方法来解决此问题。用容斥原理的那一个呢?想一想,被计数的事物有那几类?每一类的元素个数是多少?

《奥数容斥原理解法》相关文章