例1 一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?
分析 当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
【边学边练】 两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?
例2 一支队伍长350米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队头,然后再返回队尾,一共要用多少分钟? 分析 要求一共要多少分钟,必须先求出从队尾赶到队头要多少分钟,再求出从队头到队尾要用多少分钟,把这两个时间相加即可。
【边学边练】一支队伍长450米,以每秒3米的速度前进,一个通讯员骑车以匀速从队尾赶到队头用了50秒。如果他再返回队尾,还需要多少秒?
例3 某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米。李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用多少秒? 分析 要求一共要用多少分钟,首先必须求出队伍的长度,然后可以参照例2解题。
【边学边练】 有966名解放军官兵排成6路纵队参加抗洪抢险。队伍行进速度是每秒3米,前后两排的间隔距离是1.2米。现有一通讯员从队头赶往队尾用了16秒钟。如果他再从队尾赶到队头送信还需要多少时间? 例4 甲、乙、丙三人都从A地出发到B地。乙比丙晚出发10分钟,40分钟后追上丙;甲比乙晚出发20分钟,100分钟追上乙;甲出发多少分钟后追上丙?
例4 甲、乙、丙三人都从A地出发到B地。乙比丙晚出发10分钟,40分钟后追上丙;甲比乙晚出发20分钟,100分钟追上乙;甲出发多少分钟后追上丙?
设丙的速度为1米/分钟. (1)当乙追上丙时,丙共行了1×(40+10)=50米,由此可知乙行50米用了40分钟,乙的速度为50÷40=1.25(米/分钟); (2)当甲追乙时,乙已经先出发走了20分钟,这时甲乙的距离差为1.25×20=25(米),甲乙的速度差为25÷100=0.25(米); 甲的速度为1.25+0.25=1.5(米); (3) 当甲追丙时,丙已经先出发走了10+20=30分钟,这时甲丙的距离差为1×(10+20)=30米,速度差为1.5-1=0.5(米/分钟),追及时间为30÷0.5=60(分钟)。
【边学边练】 小明、小峰和小光三人都从甲地到乙地,早上6时小明、小峰两人一起从甲地出发,小明每小时走5千米,小峰每小时走4千米,小光上午8时从甲地出发,傍晚6时,小光、小明同时到达乙地。小光什么时候追上小峰?
1、甲乙两人在周长400米的环形跑道上竞走,已知乙的速度是平均每分钟80米,甲的速度是乙的1.25倍,甲在乙前100米,问多少分钟后,甲可以追上乙?
2、一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距多少千米?
3、自行车队出发12分钟后,通讯员骑摩托车去追他们,在距离出发点9千米处追上了自行车队。然后,通讯员立刻返回出发点,随后又返回去追上了自行车队,再追上时恰好离出发点18千米,试求自行车队和摩托车的速度。
【走进赛题】
1、小冬、小青两人同时从甲、乙两地出发相向而行,两人在离甲地40千米处第一次相遇。相遇后两人仍以原速继续行驶,并且在各自到达对方出发点后立即沿原路返回,途中两人在距乙地15千米处第二次相遇,甲乙两地相距多少千米?2、甲乙两站相距360千米,客车和货车同时从甲站出发驶向乙站,客车每小时行60千米,货车每小时行40千米。客车到达乙站后停留0.5小时,又以原速返回甲站,两车相遇地点离乙站多少千米?3、小张、小王两位运动员进行竞走训练,小张从甲地、小王从乙地两人同时出发,在两地之间往返行走(到达另一地后就马上返回)。在离甲地3.5千米处他们第一次相遇,又在小张离开乙地3千米处第二次相遇。这样继续下去,当他们第四次相遇时,距甲地多少千米?