当前位置:得满分网教育文章数学学科知识数学学习数学游戏五年级趣味数学抽屉原理

五年级趣味数学抽屉原理

11-01 11:51:45 | 浏览次数: 98418 次 | 栏目:数学游戏
标签:数学游戏,http://www.manfen6.com 五年级趣味数学抽屉原理,

五年级趣味数学抽屉原理

应用抽屉原理是解决一些数学竞赛题的一把钥匙。

什么是抽屉原理呢?抽屉原理可以这样表达:把(n+1)个物体,放进n个抽屉里去,不论怎样放法,至少有一个抽屉内的物体不少于2个。

A组:

1.有29个人都在2月份出生,其中一人说:“我的生日肯定和其他人重复。”这话对吗?

2.某校有366名1979年出生的学生,那么是否至少有2个学生的生日是同一天的?

3.参加数学竞赛的210名学生,能否保证有18名或18名以上的学生在同一个月出生?为什么?

4.一个袋子里有些球,这些球除颜色不同外,其他都相同。其中红球10个,白球9个,黄球8个,蓝球2个,某人闭着眼睛从其中取出若干个。试问他至少要取多少个球,方能保证至少有4个球颜色相同?

5.有黑色、白色、黄色的筷子各8根,混杂地放在一起,黑暗中想从这些筷子中取出颜色不同的两双筷子,问至少要取多少根才能保证达到要求?(1986年“华罗庚金杯”少年数学邀请赛初赛试题)

B组:

6.有红、黄、蓝、黑四种颜色的小球各若干个,每个人可以从中任意选择两个,那么需要几个人才能保证至少有2人选的小球颜色相同?为什么?

7.某电影院共有1987个座位,有一天,这家电影院上、下午各演一场电影。看电影的正巧是甲、乙两所中学的各1987名师生。同一所学校的学生有的看上午场,也有的看下午场。因此,有人推断说:“这天看电影时,肯定有的座位在上午、下午坐的是两所不同学校的师生。”你能说明这种断言正确与否吗?

8.10名乒乓球运动员进行单循环比赛(每两个运动员之间都要赛一场而且只赛一场)。证明每天比赛结束时,一定有两名运动员,他们累积比赛的场数是相同的。

9.在我国至少有两个人出生的时间相差不会超过4秒钟。你能证明这个结论是正确的吗?

C组:

10.证明在任何6个人的聚会上,总有3个人互相认识或者3个人互相不认识。

11.老师将一批课外读物随意分给10名学生,保证每个学生至少分到1本,可以肯定在这10名学生中,一定有一些学生所得到的书的总和是10的倍数吗?为什么?

12.从13个自然数中,一定可以找到两个,它们的差是12的倍数。

答案:

A组:1.不对。因为闰年2月份有29天,29个人有可能两两生日都不相同。

2.这道题中的“1979年”是平年,一年有365天,应用抽屉原理,把365天看作365个抽屉,把366名学生看作366本书,把366本书放到365个抽屉中,至少有一个抽屉中有2本书。因此,366名学生中至少有2名学生的生日是同一天的。3.这道题问的是在210名学生中能否有18名以上的学生是同一个月出生的。应用抽屉原理,把一年的12个月看作12个抽屉,把210名学生看作210本书,如果每个抽屉里放17本书,那么共放17×12=204(本),因为210>204,所以一定有18本或18以上的书在同一个抽屉里。因此,参加数学竞赛的210名学生中,肯定有18名或18名以上的学生在同一个月出生。

4.3+3+3+2+1=12(个)。

5.在黑暗中摸筷子,如果摸8根都是同一颜色,只能保证有一双筷子。再摸2根,如果颜色不同,一样一根,也不能配成一双。这时,10根筷子共有三种颜色,再摸一根,不论是什么颜色,总可以从“一样一根”的筷子中选出一根来配成一双。所以,至少要取出11根,才能保证取出颜色不同的两双筷子。

B组:6.这道题问的是需要几个人才能保证至少有2人选的小球颜色相同,那么从红、黄、蓝、黑四种颜色的小球中任意选择两个,有几种不同的选法呢?共有10种不同的选法:(1)红+红;(2)黄+黄;(3)蓝+蓝;(4)黑+黑;(5)红+黄;(6)红+蓝;(7)红+黑;(8)黄+蓝;(9)黄+黑;(10)蓝+黑。即10个人参加选,每人选的小球颜色不相同。应用抽屉原理,把10种选法看作10个抽屉,每人任意选2个球,需要有11人,才能保证至少有2人选的小球颜色相同。7.这种说法是正确的。甲乙两校师生都是1987名,电影院的座位也恰是1987个,上、下午两场共有1987×2人看电影,显然上、下午都满场。

由于电影院共有1987个座位,是个奇数,且为:993×2+1,因此,上午场看电影的师生中至少有一个学校的人数不少于994人,假设甲校看电影人数不少于994人,那么甲校下午看电影的人数不多于1987-994=993(人),这些学生即使全坐在上午甲校学生的座位上,也不能坐满,至少还余下一个座位,这个座位下午要坐的一定是乙校看电影的师生。8.由于比赛是单循环进行的,所以在整个比赛过程中每个运动员都要赛9场。这样在每天比赛结束时,都可以出现两种情况,一种情况是每一运动员都还没有赛9场,也就是说这9名运动员已经赛过的场数只可以是0,1,2,3,4,5,6,7,8这9种。这9种可能性就是抽屉,元素是10名运动员,可见一定有两个人赛的场数是一样的。

还有一种情况,就是已经有某个运动员赛了9场,由于是单循环,不能还有运动员没有赛过。这样10名运动员赛过的场数只可能是1,2,3,4,5,6,7,8,9这9种。还是9个抽屉10个元素。

总之,无论是哪一种情况,一定有两个人赛的场数是一样多的。

9.首先我们要明确在我国有12亿人口,而每个人的寿命设为不超过110岁,这样我们看一看在110年里共包括多少个4秒间隔,这个数字也就是抽屉的个数,如果这个数小于12亿,那么就可以肯定有两个人出生的时间相差不超过4秒。

110年大致合4万天,一天有3600×24秒,这样在110年中共有3600×24×4万秒,于是4秒间隔数为3600×24×4万÷4=86400万,即八亿六千四百万。

这就是抽屉数,元素数是12亿。于是一定有两个人在同一抽屉里,也就是说,至少有两人出生时刻相差不到4秒。

C组:10.为了便于说明问题,我们在纸上取6个点A、B、C、D、E、F来代表6个人。如果两个人认识就用红线(图10-16中的实线)把代表他们的点连接起来,如果两个人互相不认识就用蓝线(图中的虚线)把代表两人的点连接起来,每两点之间都有一条红线或者蓝线连结着,这些点和线组成了若干个三角形。问题就转化了,如果有三个人互相认识(或不认识),那么以代表这三个人的三个点为顶点的三角形的三条边全是红色(或蓝色)的。




考虑从A点出发的五条线。由于它们不是红色的就是蓝色的,由抽屉原理知,至少有三条边的颜色是相同的,不妨设为AB、AC及AD为红色的。

下面考虑点B、C、D之间的连线。如果三条连线中至少有一条是红色的,假如BC是红色的,那么△ABC的三条边全是红色的,说明A、B、C三点代表的三个人互相认识;如果三条连线全是蓝色的,则△BCD的三条边都是蓝色的,说明B、C、D三点代表的三个人互相不认识。

11.题目是要证明有一些学生分得的课外读物的总和是10的倍数。所以可以把10个学生所分得的课外读物数的和写出来进行分析。设10个学生分得的课外读物的数分别是a1、a2、…、a10;再设s1=a1,s2=a1+a2,s3=a1+a2+a3,…,s10=a1+a2+…+a10;分别代表1个学生,2个学生……,10个学生所分得的书的总和。下面我们来分析s1,s2,s3,…,s10这10个数。自然数被10除时,余数只有10种可能的情况,即0,1,2,…,9。

把每一个s用10去除,都各自得到一个余数。如果每一个数被10除后的余数都不相同,则必有一个s被10除余数为0,比如是S7,也就是说,前7个学生所分得的课外读物的总和是10的倍数。否则根据抽屉原则,一定有两个s,它们被10除后所得的余数相等,不妨设为S2和S8;于是S8-S2就一定能被10整除。而s8-s2=a8+a7+a5+a4+a3,也就是说第3个学生至第8个学生分得的课外读物的总和是10的倍数。这样问题就全部解决了。

12.有了上一题的分析,这个题就变得十分简单了。设13个自然数为a1,a2,a3,…,a12,a13。用12去除每个a,得到13个商和余数。

由于自然数被12除时,只可能有12种不同的余数,这就是要找的抽屉,13个数是元素,于是一定有两个在同一抽屉里,即它们被13除时余数是相同的,不妨设为a7=12·q1+r,a11=12·q2+r,a7-a11=12(q1-q2)是12的倍数。问题得到解决。

TAG: 数学  

《五年级趣味数学抽屉原理》相关文章