在 和 中,
.…………………………………………………………………………5分
16.解:原式= ………………………………………………2分
= ………………………………………………3分
= .…………………………………………………………………………4分
当 时,
原式= .…………………………………………………………5分
17.解:(1)∵ 点A 在一次函数 的图象上,
∴ .
∴ 点A的坐标为 .…………………………………………………………………1分
∵ 点A在反比例函数 的图象上,
∴ .
∴反比例函数的解析式为 . ……………………………………………………3分
(2)点 的坐标为 .………………………………………………………5分
18.解:设第一批购进水果 千克,则第二批购进水果2.5 千克,…………………………1分
依据题意得:
………………………………………………………………………………3分
解得x=20,
经检验x=20是原方程的解,且符合题意……………………………………………………4分
答:第一批购进水果20千克;………………………………………………………………5分
四、解答题(本题共20分,每小题5分)
19.解:过 作 交 于 ,则 ,
∴ …………………………………………………………………5分
答:甲乙两人之间的距离是 米
20.解:(1)50.9;…………………………….…………………………………………….2分
(2)①……………………………………………………………………………….5分
21. 解:(1)连接OD.
∵OA=OD
∴∠OAD=∠ODA.
∵AD平分∠BAC
∴∠OAD=∠CAD,
∴∠ODA=∠CAD.
∴OD∥AC.………………………………………………1分
∵DE⊥AC,
∴∠DEA=∠FDO=90°
∴EF⊥OD.
∴EF是⊙O的切线. ……………………………………2分
(2)设BF为x.
∵OD∥AE,
∴△ODF∽△AEF. ……………………………………3分
∴ ,即 .
解得 x=2
∴BF的长为2. ……………………………………5分
22.(1)
分割正确,且画出的相应图形正确……………………………………………………2分
(2)证明:在辅助图中,连接OI、NI.
∵ON是所作半圆的直径,
∴∠OIN=90°.
∵MI⊥ON,
∴∠OMI=∠IMN=90°且∠OIM=∠INM.
∴△OIM∽△INM.
∴OMIM=IMNM .即IM 2=OM•NM.…………………………………………………3分
∵OM=AB,MN=BC
∴IM 2 = AB•BC
∵AF=IM
∴AF 2=AB•BC=AB•AD.
∵四边形ABCD是矩形,BE⊥AF,
∴DC∥AB,∠ADF=∠BEA=90°.
∴∠DFA=∠EAB.
∴△DFA∽△EAB.
∴ADBE=AFAB .即AF•BE=AB•AD=AF 2.
∴AF=BE.………………………………………………………………………4分
∵AF=BH
∴BH=BE.
由操作方法知BE∥GH,BE=GH.
∴四边形EBHG是平行四边形.
∵∠GEB=90°,
∴四边形EBHG是正方形.……………………………………………………5分
五、解答题(本题满分7分)
23.解:(1)结论: ……………………2分
证明:过点P作MN BC
四边形 是平行四边形
……………………………………………3分
四边形 是平行四边形
……………………………………………4分
又 ,MN BC
…………………………………………5分
(2)结论: ……………………………7分
六、解答题(本题满分7分)
24.解:(1) ……………………………………………1分
(2)①∵二次函数 经过点(1,2)和(-1,0)
解,得
即 …………………………………………………………………………2分